Thursday, 30 March 2017

By Data Scraping Services Are Important Tools Of Business

By Data Scraping Services Are Important Tools Of Business

Studies and market research on any company or organization plays an important role in strategic decision-making process. Data mining and web scraping techniques are important tools that the relevant information and to find information about your personal or business use. Many companies, self-employed, copy and paste the information into the website. This process is very reliable, but very expensive as it is a waste of time and effort to get results. This is due to the fact that information is collected and used less resources and time to collect these data will be compared.

Nowadays many data mining companies and their websites effective web scraping technique that precisely thousands of pages of information about the development of the crop can crawl. Criminal records CSV, database, XML file, or other source with a form. correlations and patterns in data, so that policies can be designed to help decision-making. Data can also be stored for later use.

The following are some common example of data extraction:

In order to scrap the government through the portal, citizens who are reliable given the study name to remove. Competitive pricing and product attribute data scraping websites You can open a web site or a web design office image upload videos and photos of scraping

Automatic data collection Regularly collects information. market it is possible to understand the customer's behavior and predict the likelihood of content changes.

The following are examples of automatic data collection:

Hourly monitoring of special shares
collects mortgage rates on a daily basis by various financial institutions
regularly need to check the weather report

By using web scraping services, it is possible to extract information related to your business. Since then analyzed the data to a spreadsheet or database can be downloaded and compared. Information storage database, or in the required format and interpretation of the correlations to understand and easier to identify hidden patterns.

Data mining services, it is possible pricing, shipping, database, your profile information and competitors' access to information.
Some of the challenges would be:

Web masters must change their website to be more user-friendly and better looking, in turn, violates the delicate scraper data extraction logic.

Block IP addresses: If you constantly keep your office scraping the site, IP "guard" From day one has been blocked.

Ellet not an expert in programming, you cannot receive data.

society abundant resources, the users of the service, which continues to operate them fresh data is transferred.

Source:http://www.selfgrowth.com/articles/by-data-scraping-services-are-important-tools-of-business

Wednesday, 29 March 2017

Data Mining and Financial Data Analysis

Most marketers understand the value of collecting financial data, but also realize the challenges of leveraging this knowledge to create intelligent,
 proactive pathways back to the customer. Data mining - technologies and techniques for recognizing and tracking patterns within data - helps businesses sift through layers of seemingly unrelated data for meaningful relationships, where they can anticipate, rather than simply react to, customer needs as well as financial need. In this accessible introduction, we provides a business and technological overview of data mining and outlines how, along with sound business processes and complementary technologies, data mining can reinforce and redefine for financial analysis.

Objective:

1. The main objective of mining techniques is to discuss how customized data mining tools should be developed for financial data analysis.

2. Usage pattern, in terms of the purpose can be categories as per the need for financial analysis.

3. Develop a tool for financial analysis through data mining techniques.

Data mining:

Data mining is the procedure for extracting or mining knowledge for the large quantity of data or we can say data mining is "knowledge mining for data" or also we can say Knowledge Discovery in Database (KDD). Means data mining is : data collection , database creation, data management, data analysis and understanding.

There are some steps in the process of knowledge discovery in database, such as

1. Data cleaning. (To remove nose and inconsistent data)

2. Data integration. (Where multiple data source may be combined.)

3. Data selection. (Where data relevant to the analysis task are retrieved from the database.)

4. Data transformation. (Where data are transformed or consolidated into forms appropriate for mining by performing summary or aggregation operations, for instance)

5. Data mining. (An essential process where intelligent methods are applied in order to extract data patterns.)

6. Pattern evaluation. (To identify the truly interesting patterns representing knowledge based on some interesting measures.)

7. Knowledge presentation.(Where visualization and knowledge representation techniques are used to present the mined knowledge to the user.)

Data Warehouse:

A data warehouse is a repository of information collected from multiple sources, stored under a unified schema and which usually resides at a single site.

Text:

Most of the banks and financial institutions offer a wide verity of banking services such as checking, savings, business and individual customer transactions, credit and investment services like mutual funds etc. Some also offer insurance services and stock investment services.

There are different types of analysis available, but in this case we want to give one analysis known as "Evolution Analysis".

Data evolution analysis is used for the object whose behavior changes over time. Although this may include characterization, discrimination, association, classification, or clustering of time related data, means we can say this evolution analysis is done through the time series data analysis, sequence or periodicity pattern matching and similarity based data analysis.

Data collect from banking and financial sectors are often relatively complete, reliable and high quality, which gives the facility for analysis and data mining. Here we discuss few cases such as,

Eg, 1. Suppose we have stock market data of the last few years available. And we would like to invest in shares of best companies. A data mining study of stock exchange data may identify stock evolution regularities for overall stocks and for the stocks of particular companies. Such regularities may help predict future trends in stock market prices, contributing our decision making regarding stock investments.

Eg, 2. One may like to view the debt and revenue change by month, by region and by other factors along with minimum, maximum, total, average, and other statistical information. Data ware houses, give the facility for comparative analysis and outlier analysis all are play important roles in financial data analysis and mining.

Eg, 3. Loan payment prediction and customer credit analysis are critical to the business of the bank. There are many factors can strongly influence loan payment performance and customer credit rating. Data mining may help identify important factors and eliminate irrelevant one.

Factors related to the risk of loan payments like term of the loan, debt ratio, payment to income ratio, credit history and many more. The banks than decide whose profile shows relatively low risks according to the critical factor analysis.

We can perform the task faster and create a more sophisticated presentation with financial analysis software. These products condense complex data analyses into easy-to-understand graphic presentations. And there's a bonus: Such software can vault our practice to a more advanced business consulting level and help we attract new clients.

To help us find a program that best fits our needs-and our budget-we examined some of the leading packages that represent, by vendors' estimates, more than 90% of the market. Although all the packages are marketed as financial analysis software, they don't all perform every function needed for full-spectrum analyses. It should allow us to provide a unique service to clients.

The Products:

ACCPAC CFO (Comprehensive Financial Optimizer) is designed for small and medium-size enterprises and can help make business-planning decisions by modeling the impact of various options. This is accomplished by demonstrating the what-if outcomes of small changes. A roll forward feature prepares budgets or forecast reports in minutes. The program also generates a financial scorecard of key financial information and indicators.

Customized Financial Analysis by BizBench provides financial benchmarking to determine how a company compares to others in its industry by using the Risk Management Association (RMA) database. It also highlights key ratios that need improvement and year-to-year trend analysis. A unique function, Back Calculation, calculates the profit targets or the appropriate asset base to support existing sales and profitability. Its DuPont Model Analysis demonstrates how each ratio affects return on equity.

Financial Analysis CS reviews and compares a client's financial position with business peers or industry standards. It also can compare multiple locations of a single business to determine which are most profitable. Users who subscribe to the RMA option can integrate with Financial Analysis CS, which then lets them provide aggregated financial indicators of peers or industry standards, showing clients how their businesses compare.

iLumen regularly collects a client's financial information to provide ongoing analysis. It also provides benchmarking information, comparing the client's financial performance with industry peers. The system is Web-based and can monitor a client's performance on a monthly, quarterly and annual basis. The network can upload a trial balance file directly from any accounting software program and provide charts, graphs and ratios that demonstrate a company's performance for the period. Analysis tools are viewed through customized dashboards.

PlanGuru by New Horizon Technologies can generate client-ready integrated balance sheets, income statements and cash-flow statements. The program includes tools for analyzing data, making projections, forecasting and budgeting. It also supports multiple resulting scenarios. The system can calculate up to 21 financial ratios as well as the breakeven point. PlanGuru uses a spreadsheet-style interface and wizards that guide users through data entry. It can import from Excel, QuickBooks, Peachtree and plain text files. It comes in professional and consultant editions. An add-on, called the Business Analyzer, calculates benchmarks.

ProfitCents by Sageworks is Web-based, so it requires no software or updates. It integrates with QuickBooks, CCH, Caseware, Creative Solutions and Best Software applications. It also provides a wide variety of businesses analyses for nonprofits and sole proprietorships. The company offers free consulting, training and customer support. It's also available in Spanish.

Source:http://ezinearticles.com/?Data-Mining-and-Financial-Data-Analysis&id=2752017

Web Data Extraction Services and Data Collection Form Website Pages

For any business market research and surveys plays crucial role in strategic decision making. Web scrapping and data extraction techniques help you find relevant information and data for your business or personal use. Most of the time professionals manually copy-paste data from web pages or download a whole website resulting in waste of time and efforts.

Instead, consider using web scraping techniques that crawls through thousands of website pages to extract specific information and simultaneously save this information into a database, CSV file, XML file or any other custom format for future reference.

Examples of web data extraction process include:
• Spider a government portal, extracting names of citizens for a survey
• Crawl competitor websites for product pricing and feature data
• Use web scraping to download images from a stock photography site for website design

Automated Data Collection
Web scraping also allows you to monitor website data changes over stipulated period and collect these data on a scheduled basis automatically. Automated data collection helps you discover market trends, determine user behavior and predict how data will change in near future.

Examples of automated data collection include:
• Monitor price information for select stocks on hourly basis
• Collect mortgage rates from various financial firms on daily basis
• Check whether reports on constant basis as and when required

Using web data extraction services you can mine any data related to your business objective, download them into a spreadsheet so that they can be analyzed and compared with ease.

In this way you get accurate and quicker results saving hundreds of man-hours and money!

With web data extraction services you can easily fetch product pricing information, sales leads, mailing database, competitors data, profile data and many more on a consistent basis.

Source:http://ezinearticles.com/?Web-Data-Extraction-Services-and-Data-Collection-Form-Website-Pages&id=4860417

Thursday, 23 March 2017

Web Data Extraction

Web Data Extraction

The Internet as we know today is a repository of information that can be accessed across geographical societies. In just over two decades, the Web has moved from a university curiosity to a fundamental research, marketing and communications vehicle that impinges upon the everyday life of most people in all over the world. It is accessed by over 16% of the population of the world spanning over 233 countries.

As the amount of information on the Web grows, that information becomes ever harder to keep track of and use. Compounding the matter is this information is spread over billions of Web pages, each with its own independent structure and format. So how do you find the information you're looking for in a useful format - and do it quickly and easily without breaking the bank?

Search Isn't Enough

Search engines are a big help, but they can do only part of the work, and they are hard-pressed to keep up with daily changes. For all the power of Google and its kin, all that search engines can do is locate information and point to it. They go only two or three levels deep into a Web site to find information and then return URLs. Search Engines cannot retrieve information from deep-web, information that is available only after filling in some sort of registration form and logging, and store it in a desirable format. In order to save the information in a desirable format or a particular application, after using the search engine to locate data, you still have to do the following tasks to capture the information you need:

· Scan the content until you find the information.

· Mark the information (usually by highlighting with a mouse).

· Switch to another application (such as a spreadsheet, database or word processor).

· Paste the information into that application.

Its not all copy and paste

Consider the scenario of a company is looking to build up an email marketing list of over 100,000 thousand names and email addresses from a public group. It will take up over 28 man-hours if the person manages to copy and paste the Name and Email in 1 second, translating to over $500 in wages only, not to mention the other costs associated with it. Time involved in copying a record is directly proportion to the number of fields of data that has to copy/pasted.

Is there any Alternative to copy-paste?

A better solution, especially for companies that are aiming to exploit a broad swath of data about markets or competitors available on the Internet, lies with usage of custom Web harvesting software and tools.

Web harvesting software automatically extracts information from the Web and picks up where search engines leave off, doing the work the search engine can't. Extraction tools automate the reading, the copying and pasting necessary to collect information for further use. The software mimics the human interaction with the website and gathers data in a manner as if the website is being browsed. Web Harvesting software only navigate the website to locate, filter and copy the required data at much higher speeds that is humanly possible. Advanced software even able to browse the website and gather data silently without leaving the footprints of access.

Source : http://ezinearticles.com/?Web-Data-Extraction&id=575212

Tuesday, 14 March 2017

What is Data Mining? Why Data Mining is Important?

What is Data Mining? Why Data Mining is Important?

Searching, Collecting, Filtering and Analyzing of data define as data mining. The large amount of information can be retrieved from wide range of form such as different data relationships, patterns or any significant statistical co-relations. Today the advent of computers, large databases and the internet is make easier way to collect millions, billions and even trillions of pieces of data that can be systematically analyzed to help look for relationships and to seek solutions to difficult problems.

The government, private company, large organization and all businesses are looking for large volume of information collection for research and business development. These all collected data can be stored by them to future use. Such kind of information is most important whenever it is require. It will take very much time for searching and find require information from the internet or any other resources.

Here is an overview of data mining services inclusion:

* Market research, product research, survey and analysis
* Collection information about investors, funds and investments
* Forums, blogs and other resources for customer views/opinions
* Scanning large volumes of data
* Information extraction
* Pre-processing of data from the data warehouse
* Meta data extraction
* Web data online mining services
* data online mining research
* Online newspaper and news sources information research
* Excel sheet presentation of data collected from online sources
* Competitor analysis
* data mining books
* Information interpretation
* Updating collected data

After applying the process of data mining, you can easily information extract from filtered information and processing the refining the information. This data process is mainly divided into 3 sections; pre-processing, mining and validation. In short, data online mining is a process of converting data into authentic information.

The most important is that it takes much time to find important information from the data. If you want to grow your business rapidly, you must take quick and accurate decisions to grab timely available opportunities.

Source: http://ezinearticles.com/?What-is-Data-Mining?-Why-Data-Mining-is-Important?&id=3613677